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Abstract

We investigate the origin of long-range correlated jumps observed in molecular-dynamics simulations of Brownian

motion of interstitial clusters in irradiated crystalline materials. We show that the presence of long jumps is associated

with low thermal friction experienced by a cluster propagating through the crystal lattice in the presence of thermal

fluctuations. Using the equation for the friction coefficient, we estimate the length of ballistic trajectories of clusters

ejected from high-energy cascades and analyse implications of our findings for understanding the nature of the long-

range effect observed in experiments on ion implantation in fcc and bcc metals, and the connection between this effect

and the stability of metals under irradiation.

Crown Copyright � 2002 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Thermally activated mobility of interstitial clusters in

irradiated materials is believed to represent one of the

main factors driving the evolution of microstructure of

irradiated materials. A number of molecular-dynamics

computer simulations performed in recent years ad-

dressed this issue [1,2]. It was found that the statistics of

motion of clusters is somewhat unusual and involves the

presence of long-range correlated jumps spanning many

interatomic distances. Similar long-range jumps were

observed in the case of motion of clusters of adsorbed

atoms on a crystal surface [3]. These observations were

interpreted in terms of the low-friction limit of surface

diffusion [4]. In this paper we show that the motion of

interstitial clusters in a crystal in the presence of thermal

fluctuations is also characterised by low thermal friction.

The value of the thermal friction coefficient can be

found by calculating the rate of dissipation of energy by a

moving interstitial defect. Our treatment is based on the

representation of the defect by a soliton (crowdion) so-

lution of the Frenkel–Kontorova model. Solutions of the

Frenkel–Kontorova model, as we will show, give a highly

accurate description of the structure of the core of small

interstitial clusters. By considering the process of cre-

ation and annihilation of phonons by a moving defect we

find an explicit expression for the coefficient of thermal

friction. We show that, depending on the parameters of

the model, Brownian motion of the defect can often be

classified as corresponding to the low-friction limit.

Values of the friction coefficient obtained from the study

of Brownian motion of interstitial clusters may also be

applied to the evaluation of the length of ballistic tra-

jectories of interstitial clusters ejected from high-energy

collision cascades. This may help in understanding the

origin of the long-range effect observed in experiments on

implantation of high-energy ions in crystalline materials

and its connection with the observed differences in the

stability of fcc and bcc metals under irradiation.

2. Atomic structure of defects and the Frenkel–Kontorova

model

A large body of recent work on atomistic simulation

of the structure and mobility of defects in irradiated
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crystalline materials [1,2] was focused on establishing a

connection between the structure of a defect and its

macroscopic elastic field necessary for the description of

long-range interactions between the defect and other

elements of the microstructure of the material. On the

other hand, dynamical properties of the defect, for

example its thermally activated mobility, are largely

determined by the structure of its core, where the theory

of elasticity is not applicable. In this section we examine

how well the core of interstitial defects can be described

by the Frenkel–Kontorova model [5], which provides a

convenient way of matching the discrete and continuous

descriptions of an atomistic system. In the one-dimen-

sional Frenkel–Kontorova model we consider a linear

string (or a set of equivalent linear strings in the case of

an interstitial cluster) of atoms interacting via short-

range forces and embedded into the periodic potential of

the crystal lattice surrounding the string. The Lagran-

gian function of the string has the form

L ¼
X1
n¼�1

m _xx2n
2

� a
2

X1
n¼�1

ðxnþ1 � xn � aÞ2

� V ðx1; . . . ; xn; . . .Þ; ð1Þ

where a is a constant characterising the strength of

elastic interaction between neighbouring atoms, n is the

index of an atom in the string, and x is the coordinate in

the direction parallel to the axis of the string. The pa-

rameter a denotes the equilibrium distance between at-

oms in the string. The potential of the surrounding

lattice is normally chosen in the form

V ðx1; . . . ; xn; . . .Þ ¼
mx2

0a
2

2p2

X1
n¼�1

sin2 pxn
a

� �
; ð2Þ

where x0 is a variable parameter characterising the

amplitude of variation of this potential. The choice of

(2) is not unique, and the main requirement that Eq. (2)

has to satisfy is that the potential of the lattice must be

periodic with the period of translations a. The number

of atoms in the string (1) does not have to be equal to the

number of minima of the potential (2). In the case where

the string contains only one extra atom, the solution of

the model (1) is given by [5]

uðxÞ ¼ 2a
p

arctan exp

��
� x0ðx� X Þ

c

��
; ð3Þ

where the field of displacements of atoms uðxÞ is as-

sumed to be varying slowly in comparison with the in-

teratomic distance a, ajdu=dxj � 1. c ¼ ðaa2=mÞ1=2 is the
speed of sound in the material and X is the coordinate of

the centre of the defect. Eq. (3) represents a soliton

(crowdion) solution of equations (1) and (2). The shape

of the soliton is characterised by a dimensionless com-

bination of parameters of the model N ¼ c=x0a. This
quantity has the meaning of the effective number of

atoms participating in the formation of the crowdion.

To examine how well Eqs. (1)–(3) describe the field of

atomic displacements near the core of a glissile inter-

stitial defect we consider the structure of three interstitial

clusters of the h111i type in bcc iron containing, re-

spectively, one, two and three extra atoms embedded in

atomic strings running parallel to the [1 1 1] direction.

Fig. 1 shows how well the analytical solution (3) matches

the set of discrete atomic displacements obtained by

minimizing the energy of a simulation cell containing

approximately 105 atoms. Results shown in Fig. 1 indi-

cate that the Frenkel–Kontorova model does indeed

provide a good description of the equilibrium structure

of small interstitial clusters. It is therefore reasonable to

apply the model to the investigation of thermal mobility

and Brownian motion of interstitial clusters in a crys-

talline material.

3. Brownian motion of defects and the coefficient of

thermal friction

Assuming that the cluster retains its shape in the

process of stochastic thermal motion, the evolution of

the centre of the cluster follows the Langevin equation

m� €XX ¼ �m�c _XX þ gðtÞ; ð4Þ

where X is the projection of the coordinate of the centre

of the cluster on the direction of motion, m� is the ef-

fective mass of the cluster and c is the coefficient of

dissipative thermal friction. gðtÞ is a random force sat-

isfying conditions

hgðtÞiT ¼ 0; hgðtÞgðt0ÞiT ¼ 2m�kBTdðt � t0Þ; ð5Þ

where T is the absolute temperature. The thermal dif-

fusion coefficient D is related to c via D ¼ kBT=m�c and

the average length Lb of ballistic trajectories of intersti-

tial clusters ejected from collision cascades is given by

Lb ¼ c=c. To have an estimate of the latter quantity is

important for evaluating how far the clusters can

propagate during the initial ballistic phase of the cas-

cade.

Since the Langevin equation provides no means for

the evaluation of c, our approach will be based on the

mapping of (4) to the Fokker–Planck equation for the

distribution function F ðp; x; tÞ of moving defects [6]

oF
ot

þ p
m�

oF
ox

� o

op
c pF
��

þ m�kBT
oF
op

	�
¼ 0: ð6Þ

The Fokker–Planck equation (6) can be derived from

first principles starting from equations of motion of the
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interstitial defect. By following this approach we shall be

able to calculate the thermal friction coefficient c.
To derive the equation of motion of a cluster we use

the method proposed by McLaughlin and Scott [7]. In

the presence of thermal phonon excitations in the lattice

surrounding the defect, positions of minima of the po-

tential of the lattice (2) undergo random displacements

and the equation of motion of the atomic string acquires

the form

m
o2u
ot2

¼ aa2
o2u
ox2

� mx2
0a

2p
sin

2p½uðx; tÞ � nðx; tÞ�
a

� �
; ð7Þ

where nðx; tÞ describes the field of acoustic phonon

displacements of the lattice. Looking for a solution of

this equation in the form uðx; tÞ ¼ u0½x� X ðtÞ� þ Uðx; tÞ,
where u0½x� X ðtÞ� is given by (3) and where X ðtÞ is now
assumed to be an arbitrary function of time t, and using

the projection technique described in [7], we obtain

Fig. 1. Top: Atomic structure of an h111i interstitial cluster in bcc iron containing three extra atoms. This structure was calculated

using conjugate gradient energy minimisation and embedded-atom potentials. Strings of atoms marked by a star each contains an extra

atom. Only those atoms are shown the potential energy of which exceeds by 0.01 eV the average potential energy of atoms in the lattice.

Bottom: Comparison of displacement fields of atoms in single, double and triple crowdion interstitial clusters. Solid lines represent

analytical solutions Eq. (3) of the Frenkel–Kontorova model. Values ofN used in Eq. (3) to fit the atomic displacements areN ¼ 2:11

for the single, N ¼ 2:31 for the double and N ¼ 2:46 for the triple crowdion configuration, a ¼ 2:48 �AA.
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m� d
2X
dt2

¼ 4mx3
0

ac

Z 1

�1
dx tanh x0

x� X ðtÞ
c

� 	

sech2 x0

x� X ðtÞ
c

� 	
n2ðx; tÞ þ � � � ; ð8Þ

where m� ¼ 2m=p2N < m is the effective mass of the

defect. In Eq. (8) we neglected the terms linear in nðx; tÞ.
These terms do not contribute to phonon friction be-

cause of the incompatibility between dispersion relations

of the defect and of acoustic phonons. Eq. (8) has the

form of the Newton equation for a particle moving in

one dimension under the influence of fluctuating force

associated with displacements of atoms in the lattice. It

is important to recognise that friction is a dissipative

process and it is associated with the exchange of energy

between the defect and phonon excitations in the crystal.

Eq. (8) therefore describes not only the acceleration and

deceleration of the mobile defect, but also recoil effects

giving rise to the creation and annihilation of phonons.

The subsequent calculation of the friction coefficient

is performed in three steps [8]. First, Eq. (8) needs to be

second quantized. This makes it possible to introduce

the phonon variables and to obtain an explicit expres-

sion for the effective Hamiltonian of interaction between

the defect and phonons. By using this Hamiltonian, we

derive the kinetic equation for the density matrix of the

defect. Subsequently we consider the Fokker–Planck

limit of this kinetic equation and, by comparing the

coefficients of that equation of those of (6), we obtain an

explicit expression for c, namely,

c ¼
1:06x4

0

a
c

� �3 kBT
mc2

� 	
ln

2pc
x0a

� 	
; kBTa=�hc � 1;

5:53
�hx0

amc
kBTa
�hc

� 	4

; kBTa=�hc � 1:

8>>><
>>>:

ð9Þ

In the high temperature limit (in practice this limit

corresponds to temperatures higher than room temper-

ature) the friction coefficient depends on the parameter

x0 characterising the amplitude of variation of the po-

tential of the lattice (2) as c � x4
0. This functional de-

pendence is the same as that known from the treatment

of Rayleigh scattering of light by density fluctuations in

the atmosphere [9], where the x4
0 dependence is re-

sponsible for the blue colour of the sky.

4. Correlated jumps, the long-range effect and ballistic

propagation of clusters

An important piece of evidence illustrating the dif-

ference in the behaviour of fcc and bcc metals under

irradiation is provided by the observation of the long-

range effect in ion implantation [10–12]. In fcc metals the

damage occurs at depths that are significantly larger

than the range of ions in the material. The effect is also

observed in bcc metals but is almost absent in silicon

[13]. Evidently, the long-range damage effects must also

occur in materials irradiated by high-energy neutrons.

The difference between the two cases is associated with

the difference in the geometry of sources of mobile de-

fects generated by collision cascades. In the case of ion

implantation defects are generated in the surface layer of

the crystal. In the case of high-energy neutron irradia-

tion defects are produced homogeneously in the bulk of

the material. Understanding the origin of differences

between observations of the long-range effect in bcc and

fcc metals may help in understanding the origin of

higher resistance of bcc metals to irradiation. Note that

the depth characterising the long-range effect is pri-

marily sensitive to the crystal structure rather than to

the density of dislocations in the material. A possible

mechanism responsible for the occurrence of the long-

range effect is associated with collective events of for-

mation of mobile interstitial clusters in high-energy

collision cascades [14]. Data shown in Fig. 2 make it

possible to obtain a numerical estimate of the effective

mass m� of the cluster and evaluate the length of the

ballistic trajectory of a cluster ejected from a cascade.

Indeed, by noting that in thermal equilibrium the

motion of the centre of mass of the cluster must satisfy

the equipartition principle and by evaluating the average

squared projection of the velocity of the centre of the

cluster hV 2
z iT , we find that the effective mass m� of the

cluster is equal to m� ¼ kBT ðhV 2
z iT Þ

�1
. Using molecular-

Fig. 2. Time evolution of the position of the centre of a three-

interstitial cluster at T ¼ 50 K. The simulation involved 265 305

atoms and was performed using the system of coordinates with

x, y, z axis parallel to the [11�22]; [�1110] and [1 1 1] directions. The

fact that the X and Y coordinates of the centre of the cluster are

nearly independent of time illustrates the one-dimensional na-

ture of Brownian motion of the cluster.
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dynamics simulations, we obtain that hV 2
z iT¼50 K ¼

7:87� 107 (cm/s)2 and hV 2
z iT¼100 K ¼ 21:55� 107 (cm/s)2

for a three-interstitial cluster. From these values we find

that m� ¼ 8:77� 10�23 g for T ¼ 50 K and m� ¼
6:41� 10�23 g for T ¼ 100 K. In agreement with Eq. (8)

the effective mass of the cluster is smaller than the total

bare mass of interstitial atoms forming the cluster, and is

a decreasing function of temperature (the latter effect is

associated with the part played by the Peierls–Nabarro

barriers [15]). Using the high-temperature value of the

diffusion coefficient D0 ¼ 1:7� 10�3 cm2/s given in Ref.

[2], we obtain c ¼ kBT=m�D � 1:27� 1011 s�1 for T ¼
100 K. This estimate compares well with c � 1011 s�1

following from Eq. (9) for x0 � 1013 s�1, c � 105 cm/s,

m � 10�22 g and a � 10�8 cm. We can now estimate

the average length of random thermal displacements of

a cluster performing thermal Brownian motion as

LT¼100 K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hV 2

z iT¼100 K

p
=c ¼ 15 �AA. The fact that LT is

many times the lattice constant explains the origin of

long-range jumps observed in molecular-dynamics sim-

ulations of Brownian motion of interstitial clusters [1,2].

Knowing the thermal friction coefficient we can also

estimate the average length of the ballistic trajectory of a

cluster formed in a collision cascade as Lb ¼ c=c � 10

nm. This value is lower that the characteristic scale of

the long-range effect observed in fcc metals, where the

range of ballistic propagation of clusters approaches a

few hundred nanometres. Larger values of Lb can be

explained using Eq. (9) taking into account that Lb de-

pends strongly both on the speed of sound in the ma-

terial Lb � c5 and on the frequency x0 characterising the

degree of directionality of interatomic bonding in the

material Lb � x�4
0 . The presence of this strong func-

tional dependence makes it difficult to obtain accurate

estimates directly from Eq. (9). However, the trend ex-

hibited by (9) and in particular the rapid increase of the

value of c as a function of directionality of inter-atomic

bonding (x0 increases from fcc through bcc to the dia-

mond-structure materials) agrees with the trend found in

experimental studies of the long-range effect in Refs.

[10–12].
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